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Abstract

‘Ilis paper presents an overview of an approach t.o address m-mlph,xity issues
and real-life enginwrit]g problenls in large, urban transportation systw]ls. Ill
this context, w discuw the fundatnental prohlmn of designing a nlt,t.ropolit an
transportation system which is both efficient and controllable.

DISCLAIMER

This report was prepared as an account of work sprrsorcd by an agency of the Unitsd States
Government. Neither the United Sates Ckrvernment nor any agency thereof, nor any of their
employ=s, mnkcs any warranty, express or implied, or assumesany legal liability or rqronsi-
bility for the accuracy, completeness. or usefulnessof any information, apparatus, product, or
processdisclossd, or represents that its usc would not infringe privately uwrrsd rights. Refcr-
ena herein IO any specific commerckd product. w=ss. Ur=rvl= bY trade name. lradcmark.
manufacturer. or otherwise dots not n~rily constitute or imply its cndo~mcnt. r~-
mendatiom or favoring by the United Statm Government or any aWncY thc~f. llrc views
and opinions of authors expressed harein do nut rrccwarily state or rcflact those of the
Umtcd Statsa Government or any agency thereof.
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1 Urban transportation systems

More and morr mt’tropo!itan areas worldwide suffer from a transportation dr-
mand which exceeds capacity. In many CWS, it is not possihk or rvfvl not

desirable to extend capacity to meet. the demand [1]. In consequence. a consis-
tent manag~ment oft hese large. distributed transportation systems has become
more and more important. Examples of such activities include the construc-
tion of fast mass transit. systenls. the introduction of local bus lines. design of
traveler informational systems and car pooling to improve the use of current

capacity, introduction of congestion pricing. and in the long term also guidance
of the urban planning process towards an evolution of urban areas with lower
transportation needs.

At the level of a metropolitan region, the transport at ion dynamics is the
aggregated result of thousands or, in some cases, millions of individual trip-

making decisions for i he movement of people and goods twtween origins an{J
destinations. Every decision is based on inccm~p]ete information of Lhc state
of the transportation systenl as a whole. Since complete global knowledge of

every relevancy of the current (and future) state(s) of a transport at ion system

is impossible t~ obtain. future information based control strategies might, to
a large. extent. be based strategies exploiting self-organizing propcrt ies of the

systems. That would still not remove the inherent tension between global and
local transportation optima. This essential tension is one of many reasons why
predictability is ver~ difficult in such systems.

One method of approaching these and other ,Aelent cornplexitim of the
large transportation systems is to represent the systems and generate t %eir d y-
namics through simulation in order to asses them. The most straightforward
way seems t.o be a bottom-up microsimulation of the dynamics of all travelers
and loads at the level of where the transport, decisions are nlade. Starting with a
gmwration of travel demands derived from synthesized traveler populations and

consequent trip planning decisions. over production of associated traffic and
eventually the consequences for congest ion, travel time, air quality. and otlwr
dynanlica] system properties, call be all be generated, and thus analyzed. This
ia tile approach IIHXi by the ‘rRAINS1.MS projrct ~~]. which this work also is a

part of.

2 TRANSIMS

‘Jle ‘J’Riinsportaticu ANalysis and Simulation Systelll (’IRAFiSlhl S) is part
of the nlult.i-track Tr,d Node] Improvement I’rogrmll sponsored hy the U.S.
Dq~artnwnt of Transporl.:~ ion and thr h;~]viro~llll(’llt.al Protrct.icm AgmIcy. Los
Ala]lms National Liit)orator~ IS h’ading ils (l(~v(’lol)rlit’t][. ‘1’RANSIMS will il{l-
drvss issum resulting frmll I.h(, It]tcrltlfl(lal Sllrfacr ‘I”ransport at.ion atII.1I“;llici(’llcy
Act of 1901. such as considt’rat.ions of Ialld IIW’policiw, illt.(’rlll O(la] CIJllll(’Cti V-
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it.y. and enhanced transit w’rvice. It will support analysis of potential rosl)onwa
to the stringmlt air-quality requirenwnts of the Clear Air Act Anwndmcnts of

1990.

The TR AXS1\lS project objective is to devrlop a set of mut ually su,)port illg
realistic simulations. models. and data bases that employ advanced computa-
t iorml and analytical t echniqurs to create an int rgrated regional transport.at ion
sy~t,enls analysis environment. By applying forefront computatiorml tcchuolo-

gies and advanced methods relevant to cotnples systems analysis it will simulate
the dynamic details that contribute to the complexity inherent in today’s and

tomorrow’s transportation issues. The integrated results from the various de-

tailed simulations will support transportation planners, engineers, and others
who must, address environmental pollution. ener~v consumption. traffic con-

gestion. land use planning, traffic safety. intelligent vehicle efficacies. and the
transportation infrastructure effect 011 the quality of life, productivity y. and econ-
omy.

Fig. 1 illustrates the TRANS1M!3 architecture ~2]. The TRANSIMS m(’lh-
ods deal with individual behavioral units and proceed through several steps to
c.stimat e travel.

TR.ANSIMS predicts trips for individual households, residents, freight loads,
ancf vehicles rather than for zond aggregations of households. The Travrl De-
mand Module (module 1 in fig. 1) generates the households and commercial
activities through t be creation of rcgionai synthetic populations from census

and other data. Using activity-baaed nwthods and other techniques, it then
produces a travel representation of each household and t.raveler.

The Intermodal Route Planner (nlodule 2 in fig. 1) involves using a dmno-

graphically defined travel cost decision model particular to each traveler. Vehicle
and mode availability are represented and mode choice decisions are rnadr dur-

ing route plan gellerntio]l. The method estimates desired trips not made (latent
deman(l), induced travel, and peak load spreading. ‘~his nllows evaluation of
difTerent transportation control measures and travel demand measures on trip
planning behaviors.

The Tralfic Microsimulation (module 3 in fig. 1) ~xvcutes thv gerl(’ratml trills
on the translmrtat.ion network to predict the perfmmal]cv of individual vohiclvs
and the t.raimportation systmn. It attmllpts to execute wery indivi(lual”s travrl
itinerary in the region. For cxau]ple. (’very pas..engw vchich’ has a driv(’r WIWNUI

driving logic attempts to cxecutr the plilti, arcvlwatt~s or dvctkat.vs tfw rar, or
passes as appropriitte in traffic on t.lw roadway nrt,work.

Thr ‘flalflc Microsimulatioll produces tri~ilic inforrllfiticm for 111(>Air Quality
Modulv (modulr 4 it] fig. 1) to W41illli1t(’ sll(’h things il$i Illo!(lr vrhirll’ fll.’l usv.
source rmi~siolls, dispvrsiwl, transport, ilir chmrlist ry. Ilwtrorulogy, visibility,
all(l rrsultant air quality. ‘l%, missions tnodel accounts for holh tl](~vit]g iIII(l

stationary vrlliclrb. ‘lhr rrgional tllf’1.i’r~rt)logical modr] fur atrtmsphvrif’ rircll-
Iatiorl is sllt)lIl~’rll(~ntlf’[l I)y H ltlmlvl for local efffx-ls. ‘1’lw disl~(’rsifm IIl{]drl is
11*(1 for dirrctly elllittfxl (Iotlt.;lll)i]liillts illld Ililll(llf’s Il(ltfl I[)Cal iirl(l Ilr’llilll S(”ill(’

)!
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Figure 1: The TR.4,VSIMS arrhdcctum. Vieuvng a mctrvpolitan transportation

system as a Iargt dynamical sysicm cnabks U.Sto isolate dynamics of diflerenl
time scak. [rrban evolution which opwutcs owr years - the left part of the Jigum

is currently nof a part of Iht TRAiVSi.V.S project. TILA;VSIMS’ is curr~ntly

primarily concrrncd with the shorter time scak dynamics. It assumfs a cw-

tain land usc and trnnsporlatlon infrastructure and starts out by eslimuttng the
iraref d~mund on a day-lo-day or week-io-ueek baws. This rstnnated lrarel d<-

mand is thrn bfing routrd includlng mode chows anti trans shipment proccsws.

For instanrr nolc Ihai thr Iransporlalion of fuel ~il and school t-hddr~n po.srs
/!erY diflcr~nl ron,~(rn~n~s on the thr mudc of Iransportalion. OnCC ~hr routzng

M cornplctcd u lttirnlsi7rlulati(!rt of lh( actual trips occurs whlrh deals with th~

scrond-!o-srrond dynamic.s. AS an important sldr effect of nrban iraflic the mo-
bilr warm pollu!ion y, nvra(io)t cult bt IwIIIputal tit~d /ht resultiny air quulily

Impact es!trnutcd.

I)rohlen]s. ‘l”IIv air clwtllistry Irwd.’l includes dispersi(m. hut is Asigllml to dral

w’it.11swondary polllltitlll production 0[1 Iargcr sralm.
All in]lmrt ant iis])e~t to tlot(” ilt this point is that all t hwr lllodulw [Iwwrilw

dil~wmt t itli(> scnl(’s. IJII1 illW~~S r(’fwwct’ individual t ravrlcrs. Act ivity l)lal]-
nitlg op(jri\t(’* 011 H d;lily or (’VW wwk]y (e.g. shopping) basis; trip I)l:lllnil]g 011



a link traversal 1ime basis constraints changing approxinlately on a daily basis:

the microsimnlation on a second-by-second ha4s: a typical time-scale for nwtr-
orological mode] is of the order of .5 minutes. Yet. these modules arc not only
connected ‘downwards”” M d~cribed above. \~arious feedbacks couple tl;ese
modules. Cnp]annahle trips will change the weekly activities of individuals:
trips which in the nlicrosirnulation take much longer than planned will need
replanning: etc. In the most extreme case: all submodules feed back into urban
evolution and settlement patterns: Bad air quality. traffic jams or unfulfillahh=
tl :sportation demands all Inakr people or I)usinmses to reIocate.

3 Travel time variance and ~npredictability

The advantage of a microsimulation approach is that the system dynamics is
being generated through the simulation wit h all its emergent properties without
any explicit asaumpt ions or aggregated mo, !. !s for these properties. The major
disadvantages of a complete microsimulat ion are extremely high computational
demands on one side and perhaps explanatory probltvns on t.hc other. The
inclusion of many details of reality may be excellent for generating a dynamics
which is close to the system under invest igat.ion, bul it dcx’s not nt:cessarily lead

to a bet.ter understanding of the basic (minill)al) mechanisms that, cause lhe
dynamics. Therei.-m the TRANSI MS project also includes the invest igat ion of
much sin)pler and computationally less demanding models and simulations. for
example the one we are going to discuss here.

One of the important isques both for analysis and for realistic simulation
of transportation systems is their high variability and t hr effect tlus has on
predictability. Here. we want to concentrat,t on one particular source of un-
predictability which nlay very WC1lbecome important in a foreseeable future:
Assume that. traffic management measures and modern information technology
(see, e.g., [4, 5]) succeed in moving the transportation system closer towards
higher efficiency. Then we face an interesting problem because in transport a-
tion systems (and presulnably also in rrlany other large, distributed man-made
systems), there is a “critical”’ regime arcmnd rnaximulu capacity, where the sys-
tem is very sensitive to small perturbations. Sn]all perturbations will generate
large I]uctuations in congestion fornlation and thus travel tinws.

‘ro iuvesl.igat,e Lllis plwnuiiicnwl wv cal] illitiit]]y col)cc,lltrat.e cJn WI extremely
simplified transportation system. We Only includ(’ vehicular tlralfic, alltf we

.assulne that all vehicles are of the sallle t,ypr. Our systelll includes only siug]c
lam’ traffir on a circular road. an(f t.hr driving dynamics is generated hy only a
fvw vrry bwic rulrs. Using a cdlular auton]ata of the forth (2) ancf (3) and a
lmrallel updatu funcl ional 1; we can ohtitin a vrry simple dynamic tritfiic systmll

a sin]ulat, ion of t.lw form

(1)



wht?re
.S1= Si[r~.J/i.Si. f,j. t) (2)

is the ith car (object). *i its position on a 1-D lattice. M its current statr
(velocity). ~i its neighborhood in front (gap to next car. which is ohjecl j). and
~i~ their interaction rult-s

fij(ri(t).lli(~ ).:i(f)) – (.fi(t + 1).~i(t + 1)). (:1)

which changes the location and the intern~! state of current car (object). For
a detailed discussion of the dynamics we refer to [3. 9. 10]. The algorit Inn for
t?c dvnrtmics is for completeness also listed in the appendix. For a general.
discussion of some of the mathematical properties of dynamical systems of the

form (1) we refer to [1-1].
The criticai regim.’ efl’ect can be seen in Figure 2. The top plot shows flow as

a function of density. The midtll~ plot shows the average time. tl. that a vehich”

in the simulation needs in order to travel 1 = 750 meters. And the hot tom plot

shows the relat ivc variance of this travel t inw. i.e.

J{(t,- (t,))~)
U(ff):=

tl .
(4)

where (. ..) denotes the average over all cars during the simulation: {II) t herc-
fore is the average travel time for all cars during the simulation. -- Sot e the
explmion of the variance near maximum flow.

On an intuitive level, this is fairly straightforward to understand: If, in
light traffic. some short temporary disturbance happens (e.g. a minor accident),
the queue caused by this disturbance will be dissolved very quickly afler the
accident has been cleared away. If the same happens in very dense traffic, it will
not have any grave effect because there is congestion all over the system anyway
and i! just shifts W pattern. However, in between these two regimes there is
a traffic density, where there are only few jams in the system, but the new
jam caused by the accident has difficulties t.o dissolve, This is the traffic density
when small dismrhances. such as a minor accident. have maximum influencr. .-
‘reChIliCa]lj’. onr can use Ihc language of a direct ed pt-rcolat ion phase transition
to precisely dracrihe what happens [6]. A first order (critical) phase trarmit ion
mists in thP syHtom.

4 Simple adaptive agents

ObviouslY, any traveler would like to avoid cottg6st.iun if possihlr. (1 iww iL

t.ranspor~at.itn; network, tritw-hs will try to rout.z the tri~- around rongestrd
areas if alt.erntitive routes me not too long or too costly. To srr wM. this
routing Lwhnvior dors with the ovmdl dynwnics in a transport atiou m~twork
wc cnn formulat~. a minimal traflic network, Here the lrnvclms hitvc individual

5
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Fig~re 3: Sch(matlc sketch of th( network us(d for the rnlmulatlons. tkhlclcs

drir( from .4 to !3 and can choow bctrcc(n the dtmrt route and the mtirh Iongtr
altcrnatirc route. On the direct roirt~ they (ncountcr a bottleneck. (Ahcr rchiclc~
drl~ L from C to D.

rou[iug ~litiis and can malw decisions about which route they want to take
depending on knowledg~ of congestion. They can also re-plan depending on
their earlier experiences of travel tinm.

imagine (W Fig. 3)a road from A to B with capacity qn,~. with a bottle-
net-k wit h capacity ~fb”short Iy before B. Further imagine that there exists an
alt crnat ive, but longer routr bet mm A and B. On the direct route from A to
H additional travelers from C have to go to dmtination D. First assume that
there are no travelers with origin in C’.

If m!my drivers are heading frmn A to B, (hey will, withoui knowing anyt hhtg
about the overall trafFic sit uat ion. all enter the direct road. In consequence, a

queu~: builds up from the bot tlerwck.
A X=h Equilibrium is Mnecl ws a sit xat iou where no agent (= driver) can

lower his or her cost(= dwrwse t ravd time) by ur.ilat erally changing behavior.
Assun:iug i Ila+ t llt’ drivmw have complete information. this implies that thr
wait ing tinle in the queue exact Iy compensates for the wldit ional driving thne

on the alt.mnative route.
Sow assume that thtw art. additional [rwet dcrllands frotn C to D (see

Fig. 3). the exit for the Iat ter lying dwrily hefnre t he Imttlemwk. Obviously. this
t raflic is suffering from thr bot t Ieneck quell ~upstream (= !eft j of the bot t.lmmck,
and from t ..wae trnvrler~. point of view It woIild be murli het tm if the qurue were
located to the left oft he rtmip that the truw low from (“ i]ae to enter tlie link.
Sotr t lint ,lim-iilg the quem, furt h iilmitrmili dots riot Iilake any diff~mmce for

t lie drivers uriginat ing ili A. - Thit; mminpl(~ illlistrat m that oiic easily finds
sit uat iorm wlwrv tIwre are Iwt ter overall solut iolib thati tlie NE.

‘/
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A way to push a traffic SYSIPIIIfrom a XE towar(is a bettvr ~v?hraltMAN ion
is IO k~wp Ih,. density 011 Path road aI or hdow ~~”. t tw d~nsity of nialcimum

throughput. Thrn there would not rxist qww- anywhew in tIw systw~. thus
ensuring that additional trat% could procd untlisturhed. Xnt~ that this rrmld
for instance imply (in the limit of a prefect implementation) that drivers have
to wait to ont rr the road network until sufli. icnt capacity is availithlv for thwln.

Om= possihlr way to achieve this is to introduce a congrst ion-drpndent toll
( ‘congestion pricing’” as opposed to ‘road pricing- ). and this toll is simply
increased until the density on the respective link has drnpped to the dmirwl
Im-t’l.

This is ~xactly thv system that we simulated.
In our simple network. there are only two different types of travelers: Trav-

elers from A to B. and travelers from C’ to D. Traw=iem from A to B can c!moar
het w=en the direct and the longer aknate route. In order to make decisions.
each AB-driver remembers his or her last travel-t irne on t’ach oft he two rout-.

A traseler calculates expected costs [fl according to

and
cost ~1: = a . tall ((i)

where ~oddirf=fand rostdltare the expected costs for the two route choicm. toll
is the toll for the current day (see below). tdircrf and tau are thr mmemhm A
travel t imm for each route. and n is a conversion factor which reflects tradeoff
between time and money. u could be different for each driver. but is uniformly
equal to one in this work. (o reflects “-stantiard values of time”. \Or. which
can be looked up for traffle systems. )

Then. each driver chooses the cheaper route. excrpt that there is a 5%
probability of error (which gives each driver a chance from time to time to
update her information about the other possibility ).

As long as the traffic dynamics is deterministic and completely uniform. t his
scheme leads to a Nash equilibrium [il. However. in our case of w ochaat ic traffic
dynamics, this is no longer true: There might well he a decision rule different
from the one above where at least cme traveler is het.ter oR, for example by
triggering some kind of day-to-day oscillation between the two routes and taking
advantage of it. III other words. by dealing with stochastic traffic dynamics. the
notions of economic equilibrium theory have to be used with care.

}Ve dt~ribe 2(.)0 consecutive dayri of a simulation where t.ii~ toll was kept at
zero during the first 100 days. and in addjtjoll a]l &Bt.ravelers were forcrd to

use the direct route during the first 30 days.
Fig. 4a shows results for the trip tinwa and the adaptive toll. Fig. 4h t.hr

vehicle-t ovehicle variations of the trip time (as defined earlier). and Fig. 4C
the day-aw=raged density. on selected road sections. These sections art’: (i) t hc
sect ion where the density for the toll adaptation is measured, (ii) the section of

8
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Figure 4: Slntiulution output {or NO Itfrutlon t-f the .wntplf corridor ncircod
model. Ttmt-st~ps 1-.50: .Vo adaptation: .71-100: drtrtrs i-an choost alitrnattrc
routt; J(ll-?tl(?: drlrcrs can choGsf ulttrnatlrf roui~. and th( toll adapts In (Ird(r

to ktvp th~ d~n.sttrj at an ~ficl<ntlfr[l.Top: .-trtrugt trip ttmfs for thr rttwct
and jor Iht al!t rnattrc route from .-1 to B as UY[l as for th~ rout~ from C 10 D.

and tolijor th( rftrfct rout( from .-l to B. .\ltddlc: I-chlclc-to- rchtrlc ,jlurtuatrons

of trip ttmt Jor the d~nct and for thr altcrnatlr~ routf front .4 to B. Bottom:
l)tnsitt~s on th~ ,srg~cni shared bg .4-B-dtwci trarflfrs and C-11 -trarflfrs. on
the scgmcn! shorlly h~jom thf bottlcnrck ustd for dftcrmtnatlon of !h~ toll. find
on the altfrnntiw rout~ from .4 to l?.

the Inain road between the on-ranlp fronl (’ and ttte otf-rantp towards D. and
(iii) ttw alternative route.

Even whtw allowed (i.e. after day .30). not tllany of lhv A-B drivers IJWI tttt’

new option of t II(’ alternalivv route, This is to Iw (ispl’cted. siuce it is nlort~

9
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th,wl siiIinicw longm thxu tht’ thrt.f-t ,VW In rotlw’qucvwf.. lravd flints anil

!luct ual ions ~1.~not rhangr much.
After iiay lUI1. tiw adaptiw loilmg =Inrls ftns.J fairly qirirkl} rrarht~ a sta-

t imary talm xrnuml ?tfit .4s Ih,’ ‘l I\ll- linv In Fig. -Ii in,~iratm. !Il}s ktwjl-

indevd ~~:J; rwar tINS“Wfitirnt”- rangr htnwtwr p = IJ.~~tiand U.IL). in addition.
[he Jmwity (w t h**main sr~mrnt IUA hy !mt h .-\-H and (”-D t rat+rs) ~irtq~s
to around (!. 11. A-w’. ht CICH IL)thv tirnsity (If mrmlnuun thr~,ughput.

“lrav,d t inics for (“-D and f~>rA- Wlirt rt travt+vs go dw-n IFig. .ia t: nnd t ht.
tt~ll ~llst t>~~.t~ ~ii,. tilll,. gain for u.*. L>fth,~ ,Iirc.rt rc,utt.; ti}nrj,.. .: . ,J .1011 ~
tiwr~:tt~,,,,: Irrrall that ~t = I ).

Vr’hicie~!~>wt’tli~-leHurt Iiiti ions IFig. lh~ for t !i~ IH ,~f thv altmnat iv,’ road g(}
,. and fo: t ht~U* oft h~ dim-[ mad from t-a. 11‘-;up from ca. :? to 3round 12(-

I ‘ d~y-to-day fluctuations al=} *t’in to go u~t in allto arouml 1?’7. hlort-m~:r. t h

nw.asur.wwnts.

One should dist in.guish hvt wwn tw!>iiititvent kinds of h-t uat imm: Flu,”~ua-
t ions duc to the dynamics. and Iluctuat iorm Jut’ tu the Icaming. Thc*tluct uat ions
in the latter might be due to thr specitics of tIN thmen learning schmnr. m-
pecially the lack of historic informat Ion hcycmd the last day. NOR realis~ ic
assumpticms shout the learning and ml-route icrformation arr clainwd to avoid
that [S]. However. the rmdts for t h,’ w“hirl-t -vt’hicle fiuctuat ions [ i.e. the tT
as defined in the text) only depend cm tlw fact that the traffic dtmsity is driwm
towards the critical valu~. .A kss fluctuating learning shmuc should t h,vvfort~
rven tncrttrw our values for c. For more Mails. see [9. 10!.

The above work has to a large twtent hen motivated I}} .Arthur”s ‘bar prob-
lem- [1 1]: .Assume that people want tobe in a har when it is twit Iwr too rmpty
nor too crowded. similar to the wish of not wanting to spend too much t imc
traveling which results in a choice of rit her thc direct or the alternat ivc route
(going tot he bar ur not ). Also. the individual decision dynamics is fairly equiv-
alent: Individuals make [heir choice. then execute their decision. the outcomv
of this is added to each individual’s personal experience. and thr cycle starts
again. A fairly important difference between Art hur”s work and ours. is that
Art hur needs many different. albeit simple. decision rules fur each iudividunl to
st abilizt= the outcome. In the traffic case this has not been necessary. Arguably.
in the traffic case. the dynamics itsrlf already providm t-nough fluct uat ions that
individuals, cwm when facmi with thr sremingly same proldem. makt~ differmu
decisions.

5 Self-organized criticality in traffic networks

Sow w are in a position to justify our initial claim that traffic nlanagrtm=nt

me=ures will lead to higher fluct uat ions and thus Iowwr predictability in trdlk
networks. The last wet ion clearly shows that trailic management nltmsurtw
will tend to .wquilibrat e.. t raflic pat tcrns. that is. to make ovrrused parts of t hu
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system less overused, and to make underused parts of the system less underused.
Quite in general thus, the wholes system tends to operate closer to the point of
maximum efficiency. But as stated in Section 3 and also recovered in Section 4,
this regime is the regime where variations are highest, or, in other words, the
system naturally evolves into a state where fluctuations are highest, which can
be seen as yet another example of self-organized criticality [12].

That means th~t, for zm individual drwer, it is really impossible to predict
how Ioug a certtin trip along a certain route will actually take. Which means
in return that neither a driver nor an omniscient traffic management system
can decide which of several possible paths might be the fastest or beat. In this
way, it is the increasing unpredictability caused by the tmfic management which
eventually impedes further improvement.

It is clear that t,his argument would benefit from further simulations in r~
alist.ic traffic networks. Although this has not yet beerr done, the following
section shows an agent based simulation which has all the ingredients for such
an investigate ion.

6 A realistic network

In this section, we want to explain how the above methods can IM extended
to simulate traffic in realistic networks. As a practical exartlple, we use the
freeway network of the German land Northrhine-Westfalia (NRW). We only
show results of a single-lane implementation. .Multi-lane implementations are
straightforward [13] but only make sense when one expects that, the possibility
of passing introduces additional ~.%cts.

The impc rtant elements of the approach are (i) i~dividual trip plans, i.e. each
“driver” knows before the start of the simulation which route he/she wants t (j
take, and (ii ) the use of individual decision rules based on past %imll Iat ml”
experience. Roughly, for a plot like Fig. 5, the following was done in the simu-
lation:

● At the beginning of each “period” (% rurdl “hourti ), there were 20 ordered

queuea of vehicles with drivers waiting to enter into the network. Each
queue consisted of 2000 vehicles.

● Each simulated driver had an individ~al destination, and the set of thr
10 shortest paths to that destination to select from.

● Each driver randomly selected a yet untried path: or in case all paths had
been tried, he/she selected the path which had performed bmt in the past

(with a small random chance to try something else again).

● ‘I%e sltlilllation is Cxer!.:it-dl with each driver following his/hm path. II’tcjo
nlally vehicles al.wmpt to usr the san]e road section, this creates congestion
such as in Fig. 5.

11



..

.

&y 16. ltM.Ornin

ttMYranBrcmm

Hannovef --:....-.

~.. .
:.....

,.-.

4rthoKlcJ

Figure 5. Simulatfd tmfjic jams In a single-lane tmpl~mentaiion of the frr(-
way network of the German land Norlhrhtne- West$alta (NRIV). .$’ituatiun at
“day 16” after 6000 ttcrattons (100 minulfs). l’rre tmfir is dfnvtt-d by dots.

crztiral tm~c by light gmy ‘x”, and jammed trafic by triangles.

This scheme WM cxecutrd for sevrral consecutive periods, until t Iw congwt ion
Pattern “relaxed” to a pattrru which did not change much froni WI(I period
tG t hc next. This was usually rrachvd after simulating 15 periods: IWIO t hrtt
10 periods wwe necessary until each driver had tried wwh of his/hrr options.

Ohvioutdy, it will b{’ nmwary to replace thr arbitrary origiu/dmtiuat ion
pattern of ttwse silnulat ions by more rcidist ic rfat a. Yvt, some of t IN’ m’t work
i :>t,t]{.llrcks ~t.nl generic wit,h resi)m-t to transit traffic through N n\\’: The jams

Iwtween Wuppcrtal
Collscquvucc of t Iw
extetwion has since

,and Kn=uz Kalneu arc well known, and, a% otw SOVS,(a
Illissing mtelwi-n of the frerway A4 hyond Olpr ‘1’his

loIIg hem plan ueti: hut it h’a(fs through el]virolllllt*lltally
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sensitive areaa, and it is thus under discurision if it will ever be built. Note that
the simulation methodology presented here can be used t wduate the utility
of such an extension, or what is needed to replace it bY lmpmvements along
existing paths. Or, which traflic streams have to be reduced in order to manage
with the currently existing infrwtructure, and how this can be achieved.

The problems near Krefeid are due to the same bottleneck in North-East/South-
West direction. It is also known that the K’olner Rhg presents a bottleneck.

For further details. see [10].

7 Conclusion

All the above is in agreement with our intuition that traffic management can
indeed make traffic more efficient, but may in addition lead to higher fluctu-
ations and, as a consequence, lower predictability, since the system is driven
closer to capacity and thus to criticality. In summary we seem to have reached
a paradox: In wanting to obtain a better control of the transportation system,
by the introduction of a tra.flit management system, we actually produce a more
unpredictable traffic dynamics. This happens because the t rfic management
system in essence movm t raffle from more congested roads to less congested
roads, and thus as a whole, forces the transportation system into the critical
regime where small pert urbat ions have a large influence on the microscopic dy-

namics. Network traffic produced with adaptive drivers and traffic management

systems is therefore an example of self-organized critical dynamics.
Since air pollution a% well as serious accidents also are maximal whcrr ac-

celeration and de-acceleration is maximal, the critical regime. in addition to its
non-controlabillity, produces these highly non-desirable sides effects.

Are Traffic Management sy~tems then not desirable? This is probably t hc
wrong way to look at it. For example in stock markets, modern information tech-
nology has brought the nlarket fluctuations t.o much higher levels than before,
and traders just have Ieartled to live with that (and have introduced additional
financial instruments which insure agaiust the risks of fluctuations). It is also
unclear if society will accept a completely efficient way of trafllc management ---
for example, congestion pricing (unfort urmt.ely often confused with road pricing)
seems to evoke strong opposition by many people. And then there is always the
possibility that, when we arc aware of thr risks, we are able to design traffic
management systrms which circulnvrnt, ttw problems -. Illayhe by having less
efilcicnt flows - flows twlow maxilnal capacity and thus criticality.

13
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Appendix

“~he sinlp]e. .inglr km 1-D cellular automata used in the simulations for this

paper mo give hy t hi. following four rules [3]:

FOR all vehiclesi E {1 . . . . ..V} DO
(1) IF rrkcity[rl < t“maz AND gap[~ > wlocity[fl

THEN t’ebcit~fl = vef=itfiil +1.

(2) IF gap[il < uelcwity[fl THEN l’eitiity[~ = gap[fl.
(3) IF rebcity[fl >0 THEN with probability 0.5 rehxity[fl = twhxity[~ -1.
(4) pasitiort[i] = position[iJ + velocity[~.
END

where posit ion [fl is current position of vehicle i. vebcity[il current velocity of
VI*IIicle i, gap[il distance to nearest vehicle ahead of vehicle i. and I’mat the

mnximum velocity of each vehicle. Note that. hecauw all values are integer,
relations like gap < rchxily and gap + 1 s relocity arc equivalent. For more
details we refc*rto [3].
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